Xu
Li
,
PhD

Research Associate
Phone: 443-923-9513
Kennedy Krieger Institute

707 N. Broadway
Baltimore, MD 21205
United States

About

Dr. Xu Li is a research associate in the F.M. Kirby Research Center for Functional Brain Imaging at the Kennedy Krieger Institute.

Education

Dr. Xu Li graduated with a master's degree from Zhejiang University in China in 2004. He then obtained a doctoral degree in biomedical engineering from the University of Minnesota in 2010. His thesis focused on the development of magnetoacoustic tomography with magnetic induction for imaging electrical properties of biological tissues. After that, he started his fellowship training in the F.M. Kirby Research Center for Functional Brain Imaging at the Kennedy Krieger Institute and the department of radiology in the Johns Hopkins University. He became a research associate in the Kennedy Krieger Institute in 2011.

Research

Dr. Xu Li's present research focuses on the development of new imaging methods for mapping the magnetic properties of living systems, specifically the quantification of magnetic susceptibility in high-field MRI, mapping susceptibility tensors and their applications for studying the anatomy, physiology, and pathology of the central nervous system. Other interests include the development of new methods for imaging electrical properties of biological tissues and new MRI techniques for brain imaging.

Research Publications

Kessler RA, Li X, Schwartz K, Huang H, Mealy MA, Levy M (2018). Two-year observational study of deferiprone in superficial siderosis. CNS Neurosci Ther. 24(3), 187-192. 

Li W, Liu C, Duong TQ, van Zijl PCLi X (2017). Susceptibility tensor imaging (STI) of the brain. NMR Biomed. 30(4), .

Li X, Allen RP, Earley CJ, Liu H, Cruz TE, Edden RA, Barker PBvan Zijl PC (2016). Brain iron deficiency in idiopathic restless legs syndrome measured by quantitative magnetic susceptibility at 7 tesla. Sleep Med. 22, 75-82.

Li X, Allen RP, Earley CJ, Liu H, Cruz TE, Edden RA, Barker PBvan Zijl PC (2016). Brain iron deficiency in idiopathic restless legs syndrome measured by quantitative magnetic susceptibility at 7 tesla. Sleep Med. 22, 75-82.

van Bergen JM, Hua J, Unschuld PG, Lim IA, Jones CK, Margolis RL, Ross CA, van Zijl PCLi X (2016). Quantitative Susceptibility Mapping Suggests Altered Brain Iron in Premanifest Huntington Disease. AJNR Am J Neuroradiol. 37(5), 789-96.

Li XHarrison DMLiu H, Jones CK, Oh J, Calabresi PA, van Zijl PC (2016). Magnetic susceptibility contrast variations in multiple sclerosis lesions. J Magn Reson Imaging. 43(2), 463-73.

Bonekamp D, Barker PB, Leigh R, van Zijl PCLi X (2015). Susceptibility-based analysis of dynamic gadolinium bolus perfusion MRI. Magn Reson Med. 73(2), 544-54. 

Li Xvan Zijl PC (2014). Mean magnetic susceptibility regularized susceptibility tensor imaging (MMSR-STI) for estimating orientations of white matter fibers in human brain.Magn Reson Med. 72(3), 610-9. 

Lim IA, Li X, Jones CK, Farrell JA, Vikram DS, van Zijl PC (2014). Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR. Neuroimage. 86, 265-79.

Lim IA, Faria AV, Li X, Hsu JT, Airan RD, Mori Svan Zijl PC (2013). Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures. Neuroimage. 82, 449-69.

Yang R, Li X, Song A, He B, Yan R (2013). A 3-D reconstruction solution to current density imaging based on acoustoelectric effect by deconvolution: a simulation study. IEEE Trans Biomed Eng. 60(5), 1181-90.

Yang R, Li X, Song A, He B, Yan R (2012). Three-dimensional noninvasive ultrasound Joule heat tomography based on the acousto-electric effect using unipolar pulses: a simulation study. Phys Med Biol. 57(22), 7689-708.

Li X, Vikram DS, Lim IA, Jones CK, Farrell JA, van Zijl PC (2012). Mapping magnetic susceptibility anisotropies of white matter in vivo in the human brain at 7 T. Neuroimage. 62(1), 314-30. 

Yang R, Li XLiu J, He B (2011). 3D current source density imaging based on the acoustoelectric effect: a simulation study using unipolar pulses. Phys Med Biol. 56(13), 3825-42.

Zhou L, Li X, Zhu S, He B (2011). Magnetoacoustic tomography with magnetic induction (MAT-MI) for breast tumor imaging: numerical modeling and simulation. Phys Med Biol. 56(7), 1967-83. 

Mariappan L, Li X, He B (2011). B-scan based acoustic source reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). IEEE Trans Biomed Eng. 58(3), 713-20.

Li X, Mariappan L, He B (2010). Three-dimensional multiexcitation magnetoacoustic tomography with magnetic induction. J Appl Phys. 108(12), 124702. 

Li X, He B (2010). Multi-excitation magnetoacoustic tomography with magnetic induction for bioimpedance imaging. IEEE Trans Med Imaging. 29(10), 1759-67.

Hu G, Li X, He B (2010). Imaging biological tissues with electrical conductivity contrast below 1 S m by means of magnetoacoustic tomography with magnetic induction. Appl Phys Lett. 97(10), .

Xia RLi X, He B (2010). Comparison study of three different image reconstruction algorithms for MAT-MI. IEEE Trans Biomed Eng. 57(3), 708-13.

Xia RLi X, He B (2009). Reconstruction of vectorial acoustic sources in time-domain tomography. IEEE Trans Med Imaging. 28(5), 669-75. 

Li XLi X, Zhu S, He B (2009). Solving the forward problem of magnetoacoustic tomography with magnetic induction by means of the finite element method. Phys Med Biol. 54(9), 2667-82. 

Xia RLi X, He B (2007). Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction. Appl Phys Lett. 91(8), 83903.

Li X, Xu Y, He B (2007). Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI). IEEE Trans Biomed Eng. 54(2), 323-30. 

Li X, Xu Y, He B (2006). A Phantom Study of Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) for Imaging Electrical Impedance of Biological Tissue. J Appl Phys. 99, 066112.