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Figure 1. Intermittent hypoxia (IHx) as a model for c,,1 5{ 1
neonatal brain injury from apnea of prematurity. ;1.0- E S
Postnatal day (P). Data analysis for all experiments: % 0.51 l
*p<0.05 Unpaired Mann-Whitney 2-tailed test unless 0.0 3'0

otherwise stated.

Figure 5. Brain 3H-Acetate incorporation into lipids

is not different from Nx at P30. Ex-vivo hippocampal
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acetate incorporation (0.1uCi). n=8-11
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Figure 2. 1-Month IHx mice display sensorimotor 5
and cognitive recognition memory deficits. (A) g
Number of foot slips on the inclined beam walking task. H- 0
(B) Recognition index on the novel object recognition Gle Gin FA Gle Gin FA Gle Gin FA
test after a 12-hour delay. n=5-6; *p<0.05. Nx B IHx

Figure 6. Dependency on fatty acids for energy is
increased at P11 and P17. SeahorseXF Mito Fuel Flex

test

performed Iin single cell suspensions from

hippocampus. Glucose (Glc), glutamine (Gin), and fatty
acid (FA) n=3-7 mice; *p<0.05.
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Figure 7. Brain “C-glucose oxidation is increased only at
P11. (A) In-vivo 2-Deoxyglucose (2-DG) uptake and (B) ex-vivo

hippocampal U-4C-glucose oxidation (0.1 uCi) ; n=6-8; *p<0.05.
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Figure 8. Hippocampal acyl-carnitines provide evidence of
increased fatty acid oxidation at P11-17. (A) Free carnitine and
(B) total acyl-carnitines measured by LC-MS/MS. n=7-8; *p<0.05.
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Figure 9. Brain 'YC-fatty acid oxidation is increased at P11

and P17 and remained high despite additional glucose

supplementation. Ex-vivo hippocampal 1-%C-Oleic acid
oxidation (0.12 uCi) in media with (A) 5 or (B) 25mM glucose.
n=8; *p<0.05.
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Figure 10. Brain '“C-glutamine and '*C-BHB oxidation is

unchanged after IHx at P17. Ex-vivo hippocampal substrate
oxidation (0.2uC). n=11-13; *p<0.05.

Conclusions:Our data showed that after IHx, the
brain increases fatty acid oxidation to meet immediate
metabolic demands. These metabolic adaptations
contribute to the perturbed brain development evident in

children born extremely preterm.

Future directions: Determine the effect of IHx on

brain de novo fatty acid synthesis and on lipid composition.
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