Genetics and Genetic Testing for Autism:
Demystifying the Journey to Find a Cause

Alyssa (Ah-leesa) Blesson, MGC, CGC
Certified Genetic Counselor
Center for Autism and Related Disorders (CARD)
Kennedy Krieger Institute

Conflicts of Interest

• None.
Objectives

• To provide general background information about our current understanding of the genetics of autism spectrum disorder

• To summarize types of genetic tests and general approach to genetic evaluation of autism spectrum disorder

• To highlight considerations for genetic testing and the utility of genetic counseling for individuals/families thinking about genetic testing

• To provide information about genetic counseling services at the Center for Autism and Related Disorders (CARD) and the Kennedy Krieger Institute

Overview

• Genetics 101
• Genetics of Autism
• Clinical Genetic Testing
 • Types of tests
 • Possible results
 • Inheritance patterns
 • Considerations
• Genetic Counseling
• Questions
Genetics 101
Chromosomes

http://health.hawaii.gov/genetics/files/2013/05/xy.gif

Chromosomes \rightarrow Genes \rightarrow
DNA

https://passel.unl.edu/image/siteimages/ChromgendnalaG.jpg
DNA → Proteins

Genetics & Autism
Genetics of Autism

- Multifactorial: there is no singular known cause for autism
 - Genetics
 - Environment
 - Other factors

- There is a strong, complex genetic component
 - Various types of genetic changes in multiple genes

- Our knowledge of the genetics of autism is not perfect:
 - We’re still discovering associations with specific genetic changes to autism
 - There is a lot we still do not know
 - Many times, we cannot find the underlying genetic cause
Purpose of Genetic Testing

- Genetic testing is a **tool** to identify the underlying genetic cause for an individual’s diagnosis of autism spectrum disorder
 - Genetic testing does **not** diagnose an individual with autism
 - Testing analyzes genetic material for a particular types of genetic changes (chromosomes, DNA variants)

- There is no single genetic test to look for every type of genetic change at one time.

- Our testing is limited to our knowledge of genetics and our technology at the time testing is performed.

- Genetic testing has been recommended by multiple medical/healthcare organizations (American Academy of Pediatrics).
Reasons for Genetic Testing

- Prognosis
- Medical management
 - In rare cases, a specific treatment may be known
 - Most likely there will not be a definitive “cure” at this time
- Establish inheritance pattern to determine risks to family members and future children
 - Genetic changes are not always inherited
 - Allows for reproductive options for future pregnancies
- Psychosocial benefits
 - Closure
 - Opportunity to connect with other families
 - Alleviation of guilt/blame

Clinical Genetic Testing
Types of Genetic Changes

MUTATION ⇔ VARIANT

- **Variant** is a neutral term that means a change in DNA/chromosome.

- Everyone has variants
 - Unique, normal changes
 - **Causative (pathogenic)**

- Changes in the chromosomes (that may affect many genes)
 - Numerical chromosome abnormality
 - **Copy number variant**: deletion or duplication of a region of a chromosome
 - Structural chromosomal abnormality/rearrangement

- Changes in a single gene
 - **DNA sequence alteration**
 - Deletion or duplication

Testing Strategy

- **FIRST TIER**
 - Chromosome microarray
 - Fragile X syndrome testing
 - Specific single gene DNA tests, depending on indication

- **SECOND TIER**
 - Molecular DNA tests: specific genes vs. whole exome sequencing
Chromosome Microarray

- Detect copy number variation: deletions/duplications across all the chromosomes

Deletion

Duplication

https://www.yourgenome.org/facts/

Molecular (DNA) tests

- Single genes:
 - Fragile X syndrome
 - Panel: looking at a set number of genes associated with a particular feature/condition
 - Whole exome sequencing: analyzing the protein coding segments of all 20,000 genes
Possible Results from Genetic Testing

Positive (Abnormal)

- Identified a known genetic change related to autism
- Resources are available for information about other individuals with the same/similar genetic cause
 - UNIQUE: Rare Chromosome Disorder Support Group
 - Simons VIP connect
 - Facebook groups
 - Clinicaltrials.gov
Negative (Normal)

- Did not identify any of the genetic changes analyzed on that particular test
- **Does not** rule out an underlying genetic cause because our knowledge and technology is not perfect
- Consider further workup/testing

Variant of Uncertain Significance

- Genetic change identified without clear evidence that it is related to autism or a benign change
- Testing other family members may be recommended
- This interpretation may change over time as new information is learned
Incidental/Unexpected Finding

- Genetic change identified that is unrelated to autism
- Examples:
 - Parental relationships: consanguinity, non-paternity, non-maternity
 - Carrier status
 - Risks for other health conditions

Inheritance
Inheritance

• We inherit one copy of each chromosome (and therefore one copy of each gene) from each of our parents

• Patterns of inheritance:
 • Autosomal Dominant
 • Autosomal Recessive
 • X-linked

• Genetic disorders are not always inherited
 • Sporadic or “de novo”

Autosomal Dominant

• Genes on numbered chromosomes
• One gene copy not working \(\rightarrow\) affected with condition
• **50%** chance in each pregnancy to have affected child
• Same for males and females
Autosomal Recessive

- Genes on numbered chromosomes
- One gene copy not working → unaffected carrier
- Both gene copies not working → affected with condition
- 25% chance in each pregnancy to have affected child
- Same for males and females

X-Linked Disorders

- Males have one X chromosome therefore only one copy of the gene
 - If only copy of gene not working, he will be affected

- Females have two X chromosomes therefore two gene copies
 - If one copy is not working, she is a carrier
 - Carriers usually unaffected or partially affected
X-Linked – mother carries mutation

- Sons: 50% chance affected
- Daughters: 50% chance carrier

X-Linked – father carries mutation

- All daughters are carriers
- All sons are unaffected
Other scenarios

• De novo variant – spontaneous genetic change in child, not inherited from parents

• Mosaicism – variant is present in egg/sperms cells of the parent, but not elsewhere. The parent is likely unaffected, but is at increased risk to have another child with the condition

• Variable expression - range of signs and symptoms that can occur in different people with the same genetic change, even within the same family

Family-Building Options

- Preimplantation Genetic Diagnosis
- Prenatal Diagnosis
- Donor Eggs/Sperm
- Adoption
Considerations:
Genetic Testing is a Choice

Logistics

• Typically performed on a blood sample
 • Alternative samples: buccal (cheek swab), saliva

• Start testing in the individual diagnosed with autism
 • May consider targeted testing in parents once results received
 • In affected siblings, start with the sibling who is more severely affected

• Insurance coverage
 • Most insurances have benefits for genetic testing, but pre-authorization may be the first step
 • Most genetic testing laboratories have patient friendly billing policies

• Results come back at varying times:
 • Chromosome microarray: 4-6 weeks
 • Fragile X syndrome testing: 3-4 weeks
 • Whole exome sequencing: 4-5 months
Limitations/Risks of Genetic Testing: Not “just” a blood test

- Will not lead to definitive cure or treatment
- Results not always clear-cut
 - Positive/abnormal
 - Negative/normal
 - Variant of uncertain significance
 - Incidental/unexpected finding
- Genetic test results often have implications for family members
- Genetic discrimination and information privacy

The Genetic Information Nondiscrimination Act (GINA)

- GINA outlines protections and limitations of existing legislation to protect against potential discrimination based on genetic test results. At the federal level:
 - GINA prohibits group and individual health insurers from using genetic information (including genetic test results and family history) as eligibility or premium criteria and from requiring a patient to take a genetic test.
 - GINA prohibits employers with greater than 15 employees from using genetic information in decisions related to the hiring, firing, promotion, etc. of employees.
- GINA does not protect against discrimination based on genetic information as it may apply to:
 - life insurance
 - long-term care insurance
 - disability insurance
 - members of the federal government and/or military
Genetic Counseling

• Genetic counseling is the process of helping individuals understand and adapt to the medical, psychological, and familial implications of genetic contributions to disease.
• Genetic counselors have advanced training in medical genetics and counseling to interpret genetic test results, and to guide and support patients seeking more information about such things as:
 • How inherited diseases and conditions might affect them or their families.
 • How family and medical histories may impact the chance of disease occurrence or recurrence.
 • Which genetic tests may or may not be right for them, and what those tests may or may not tell.
 • How to make the most informed choices about healthcare conditions.
Genetic Counselors

• Genetic Counselors work in a variety of settings including:
 • Prenatal and Preconception – for women who are pregnant or thinking about becoming pregnant
 • Pediatric – for children and their family members
 • Cancer – for patients with cancer and their family members
 • Cardiovascular – for patients with diseases of the heart or circulatory system and their family members
 • Neurology – for patients with diseases of the brain and nervous system and their family members.
 • And more
• Find A Genetic Counselor Tool:
 • https://www.nsgc.org/findageneticcounselor

Informed Consent

✓ Nature/Scope
 • simple explanation of test
 • purpose = find genetic cause
 • possible result outcomes

✓ Benefits
 • May identify the genetic cause/diagnosis
 • Medical & psychosocial benefits to diagnosis

✓ Limitations
 • Does not rule-out all genetic conditions
 • Will not lead to definitive cure or treatment
 • May need to test parents

✓ Risks
 • Ambiguous results
 • Unexpected/unrelated information
 • Familial implications

✓ Costs
 • Check with insurance for authorization!
Genetic Counseling at CARD

- Either a healthcare provider makes a recommendation for first-tier genetic testing or family expresses interest in testing. Provider will place a referral for genetic counseling at CARD for pre-test counseling.
 - Informed consent
 - Family history
 - Coordinate sample collection

- Going to a genetic counseling appointment does not commit you to have genetic testing

- Result disclosure
 - In person meeting with a neurogeneticist and genetic counselor for interpretation of any abnormal genetic test results and further evaluation
 - Discuss options for further workup/testing if results are normal

Research Opportunities

[Image of SPARK logo and text: Igniting autism research, Improving lives]
Summary

• We know there is a genetic component to autism spectrum disorder, but we do not have a complete knowledge of every genetic cause.
• Genetic testing is available as a tool to potentially identify a genetic cause, based on current knowledge and technology capabilities.
• Genetic testing is a choice.
 • Reasons to do genetic testing: informational for prognosis and medical management as well as family planning
 • Reasons some families choose not to do testing: risks for uncertain/unexpected results, no guarantee of positive result/management information, concerns for discrimination
• Genetic counseling is strongly recommended for individuals/families before, during, and after genetic testing.
• Genetic counseling is available at CARD and at the Kennedy Krieger Institute.

Resources

• National Society of Genetic Counselors: Find a Genetic Counselor Tool
 • www.nsgc.org
• Genetics Home Reference
 • www.ghr.nlm.nih.gov
• Genetics and Rare Diseases Information Center:
 • https://rarediseases.info.nih.gov/gard
QUESTIONS?

Thank you!

Specific Questions?
CONTACT ✉:
blesson@kennedykrieger.org