Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex.

Mark McIntosh,'s picture
PubMed URL: 
http://www.ncbi.nlm.nih.gov/pubmed/24443233
Author: 
Pelled G
Author List: 
Li N
van Zijl P
Thakor N
Pelled G
Journal: 
J Mol Neurosci
PubMed ID: 
24443233
Pagination: 
553-61
Volume: 
53
Issue: 
4
Abstract: 
In this work, we combined optogenetic tools with high-resolution blood oxygenation level-dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency-dependency and distinct laminar activation profiles. We then found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation was greater than 3 mm. These results suggest that due to the complex neurovascular coupling, it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals.
Published Date: 
August, 2014

Appointments & Referrals

FIND A SPECIALIST

Publications

Read inspiring stories, news and updates about the Institute's patient care, research, special education, professional training, and community programs.

 

Resource Finder

 

A free resource that provides access to information and support for individuals and families living with developmental disabilities.