Genetic disruption of Smad7 impairs skeletal muscle growth and regeneration.

Mark McIntosh,'s picture
PubMed URL: 
http://www.ncbi.nlm.nih.gov/pubmed/25854148
Author: 
Wagner KR
Author List: 
Cohen TV
Kollias HD
Liu N
Ward CW
Wagner KR
Journal: 
J Physiol
PubMed ID: 
25854148
Pagination: 
2479-97
Volume: 
593
Issue: 
11
Abstract: 
Smad7 is an intracellular antagonist of transforming growth factor-β signalling pathways and modulates muscle growth in vivo. Loss of Smad7 results in decreased muscle mass, reduced force generation, fibre type switching from glycolytic towards oxidative type and delayed recovery from injury. Upregulated Smad2/3 signalling in Smad7(-/-) muscle results in reduced myoblast proliferation and differentiation. Smad7 is an important regulator of muscle growth and may be a potential intracellular therapeutic target for muscle disorders.The transforming growth factor-β (TGF-β) family of growth factors plays an essential role in mediating cellular growth and differentiation. Myostatin is a muscle-specific member of the TGF-β superfamily and a negative regulator of muscle growth. Myostatin inhibitors are currently being pursued as therapeutic options for muscle disorders. Smad7 inhibits intracellular myostatin signalling via Smad2/3, and thus presents a means of regulating myostatin and potentiating muscle growth. We investigated the functional loss of Smad7 on muscle in vivo by examining muscle growth and differentiation in mice deficient in Smad7 (Smad7(-/-) ). Smad7(-/-) mice showed reduced muscle mass, hypotrophy and hypoplasia of muscle fibres, as well as an increase in oxidative fibre types. Examination of muscle strength showed reduced force generation in vivo and ex vivo compared to wild-type controls. Analysis of muscle regeneration showed a delay in recovery, probably as a result of decreased activation, proliferation and differentiation of satellite cells, as confirmed in vitro. Additionally, myostatin expression was upregulated in Smad7(-/-) muscle. Our findings suggest that increased Smad2/3 signalling in the absence of Smad7 inhibition impedes muscle growth and regeneration. Taken together, our experiments demonstrate that Smad7 is an important mediator of muscle growth in vivo. Our studies enhance our understanding of in vivo TGF-β pathway modulation and suggest that Smad7 may be an important therapeutic target for muscle disorders.
Published Date: 
June, 2015

Appointments & Referrals

FIND A SPECIALIST

Publications

Read inspiring stories, news and updates about the Institute's patient care, research, special education, professional training, and community programs.

 

Resource Finder

 

A free resource that provides access to information and support for individuals and families living with developmental disabilities.