Magnetization transfer weighted imaging in the upper cervical spinal cord using cerebrospinal fluid as intersubject normalization reference (MTCSF imaging).

Mark McIntosh,'s picture
PubMed URL:
van Zijl PC
Author List: 
Smith SA
Golay X
Fatemi A
Jones CK
Raymond GV
Moser HW
van Zijl PC
Magn Reson Med
PubMed ID: 
The magnetization transfer ratio (MTR) is a reliable measure of MT effects because it employs an internal standard that allows quantitative comparison between subjects, independent of other contrasts, coil loading, and coil sensitivity profiles. However, at very high spatial resolution in the spinal cord at 1.5 T, the use of MTR quantification has been hampered by low signal-to-noise ratio (SNR) and acute sensitivity to motion. Here, the suitability of cerebrospinal fluid (CSF) as an alternative inter-subject MT signal intensity reference for the spine is evaluated. Contrary to MTR, this so-called MTCSF internal standard does not remove interfering T(1), T(2), and spin density contrast and is not expected to be able to discriminate between myelination and inflammation effects. However, it can detect initial changes in myelination when signal alterations are not yet detectable by conventional MRI. As a first example, this is demonstrated for the noninflammatory spinal cord white matter disease adrenomyeloneuropathy.
Published Date: 
July, 2005

Bradley L. Schlaggar, M.D., Ph.D., Named President and CEO of Kennedy Krieger Institute

We’re thrilled to welcome Bradley L. Schlaggar, M.D., Ph.D., to the Kennedy Krieger family as our next President and CEO.

Learn more.

Appointments & Referrals



Read inspiring stories, news and updates about the Institute's patient care, research, special education, professional training, and community programs.


Resource Finder


A free resource that provides access to information and support for individuals and families living with developmental disabilities.