EEG-Based Assessment of Functional Connectivity in Autism

Principal Investigator: Joshua Ewen

Sponsored by the National Institutes of Health -- 1K23NS073626-01.

There are substantial data to suggest that altered cerebral connectivity is a key aspect of the neurobiology of autism. Nevertheless, the role of altered cerebral connectivity in the production of the core impairments of autism is not yet fully understood. Of the impairments in autism, motor function is an excellent candidate for neurobiological study. Praxis abnormalities in particular are a robust and replicated finding in autism and have been well characterized behaviorally. Additionally, praxis behavior can be more easily quantified and experimentally controlled than can many aspects of complex communicative and social behavior. Praxis skill has been shown to correlate with clinical measures of communicative and social behavior. Further, the cerebral mechanisms that underlie praxis function are well understood. Specifically, inferior cortical parietal regions, premotor cortical regions and the connectivity between the two are known to be necessary for praxis function.

The electroencephalogram (EEG) has been used successfully to study cerebral connectivity associated with praxis in adults with and without apraxia; however, it has not yet been employed in children or in individuals with autism. The research proposed in the current application will address the role of altered cerebral connectivity in autism using EEG-based techniques and will relate these neurobiological alterations to impaired motor performance and impaired social and communicative performance. The specific aims are:

  1. To characterize the functional network subserving praxis in children
  2. To demonstrate alterations of cerebral connectivity in children with autism during performance of praxis tasks
  3. To assess the relationship between altered cerebral connectivity and motor, social and communicative ability

This project is proposed as part of a career development plan for the PI, a child neurologist, to obtain training in advanced EEG signal analysis, study design and systems neuroscience. The Kennedy Krieger Institute and Johns Hopkins University have world-class biomedical engineering, biostatistics and clinical departments that provide an exceptional environment to enable the PI to become an independent investigator studying brain-behavior relationships in autism and other neurodevelopmental disabilities.