Within-Host Selection Is Limited by an Effective Population of Streptococcus pneumoniae during Nasopharyngeal Colonization.

TitleWithin-Host Selection Is Limited by an Effective Population of Streptococcus pneumoniae during Nasopharyngeal Colonization.
Publication TypeJournal Article
Year of Publication2013
AuthorsLi Y, Thompson CM, Trzcinski K, Lipsitch M
JournalInfection and immunity
Volume81
Issue12
Pagination4534-43
Date Published2013 Dec
Abstract

Streptococcus pneumoniae (pneumococcus) is a significant pathogen that frequently colonizes the human nasopharynx. Environmental factors, including antimicrobial use and host immunity, exert selection on members of the nasopharyngeal population, and the dynamics of selection are influenced by the effective population size of the selected population, about which little is known. We measured here the variance effective population size (Ne) of pneumococcus in a mouse colonization model by monitoring the frequency change of two cocolonizing, competitively neutral pneumococcal strains over time. The point estimate of Ne during nasal carriage in 16 BALB/c mice was 133 (95% confidence interval [CI] = 11 to 203). In contrast, the lower-bound census population exhibited a mean of 5768 (95% CI = 2,515 to 9,021). Therefore, pneumococcal Ne during nasal carriage is substantially smaller than the census population. The Ne during day 1 to day 4 of colonization was comparable to the Ne during day 4 to day 8. Similarly, a low Ne was also evident for the colonization of pneumococcus in BALB/c mice exposed to cholera toxin 4 weeks prior to challenge and in another mouse strain (DO11.10 RAG(-/-)). We developed a mathematical model of pneumococcal colonization composed of two subpopulations with differential contribution to future generations. By stochastic simulation, this model can reproduce the pattern of observed pneumococcal Ne and predicts that the selection coefficients may be difficult to measure in vivo. We hypothesized that such a small Ne may reduce the effectiveness of within host selection for pneumococcus.

DOI10.1371/journal.pone.0076036
Alternate JournalInfect. Immun.