Simultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response.

TitleSimultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response.
Publication TypeJournal Article
Year of Publication2013
AuthorsXiao R-R, Zeng W-J, Li Y-T, Zou W, Wang L, Pei X-F, Xie M, Huang W-H
JournalAnalytical chemistry
Volume85
Issue16
Pagination7842-50
Date Published2013 Aug 20
Abstract

Over the past decades, various microfluidic devices have been developed to investigate the role of the molecular gradient in axonal development; however, there are very few devices providing quantitative information about the response of axons to molecular gradients with different slopes. Here, we propose a novel laminar-based microfluidic device enabling simultaneous generation of multiple gradients with gradually changed slope on a single chip. This device, with two asymmetrically designed peripheral channels and opposite flow direction, could generate gradients with gradually changed slope in the center channel, enabling us to investigate simultaneously the response of axons to multiple slope gradients with the same batch of neurons. We quantitatively investigated the response of axon growth rate and growth direction to substrate-bound laminin gradients with different slopes using this single-layer chip. Furthermore, we compartmented this gradient generation chip and a cell culture chip by a porous membrane to investigate quantitatively the response of axon growth rate to the gradient of soluble factor netrin-1. The results suggested that contacting with a molecular gradient would effectively accelerate neurites growth and enhance axonal formation, and the axon guidance ratio obviously increased with the increase of gradient slope in a proper range. The capability of generating a molecular gradient with continuously variable slopes on a single chip would open up opportunities for obtaining quantitative information about the sensitivity of axons and other types of cells in response to gradients of various proteins.

DOI10.1371/journal.pone.0069942
Alternate JournalAnal. Chem.