News & Updates
Event Calendar
Search Research Content
Resource Finder at Kennedy Krieger Institute
A free resource that provides access to information and support for individuals and families living with developmental disabilities.
Scatter factor/hepatocyte growth factor stimulation of glioblastoma cell cycle progression through G(1) is c-Myc dependent and independent of p27 suppression, Cdk2 activation, or E2F1-dependent transcription.
| Title | Scatter factor/hepatocyte growth factor stimulation of glioblastoma cell cycle progression through G(1) is c-Myc dependent and independent of p27 suppression, Cdk2 activation, or E2F1-dependent transcription. |
| Publication Type | Journal Article |
| Year of Publication | 2002 |
| Authors | Walter KA, Hossain MA, Luddy C, Goel N, Reznik TE, Laterra J |
| Journal | Molecular and cellular biology |
| Volume | 22 |
| Issue | 8 |
| Pagination | 2703-15 |
| Date Published | 2002 Apr |
| Abstract | Scatter factor/hepatocyte growth factor (SF/HGF) expression has been linked to malignant progression in glial neoplasms. Using two glioma cell lines, U373MG and SNB-19, we have demonstrated that SF/HGF stimulation allows cells to escape G(1)/G(0) arrest induced by contact inhibition or serum withdrawal. SF/HGF induced effects on two mechanisms of cell cycle regulation: suppression of the cyclin-dependent kinase inhibitor p27 and induction of the transcription factor c-Myc. Regulation of p27 by SF/HGF was posttranslational and is associated with p27 nuclear export. Transient transfections of U373MG and SNB-19 with wild-type p27 and a degradation-resistant p27T187A mutant were insufficient to induce cell cycle arrest, and SF/HGF downregulation of p27 was not necessary for cell cycle reentry. Analysis of Cdk2 kinase activity and p27 binding to cyclin E complexes in the presence of exogenous wild-type p27 or p27T187A demonstrated that Cdk2 activity was not necessary for SF/HGF-mediated G(1)/S transition. Similarly, overexpression of dominant-negative forms of Cdk2 did not block SF/HGF-triggered cell cycle progression. In contrast, SF/HGF transcriptionally upregulated c-Myc, and overexpression of c-Myc was able to prevent G(1)/G(0) arrest in the absence of SF/HGF. Transient overexpression of MadMyc, a dominant-negative chimera for c-Myc, caused G(1)/G(0) arrest in logarithmically growing cells and blocked SF/HGF-mediated G(1)/S transition. c-Myc did not exert its effects through p27 downregulation in these cell lines. SF/HGF induced E2F1-dependent transcription, the inhibition of which did not block SF/HGF-induced cell cycle progression. We conclude that SF/HGF prevents G(1)/G(0) arrest in glioma cell lines by a c-myc-dependent mechanism that is independent of p27, Cdk2, or E2F1. |
| Alternate Journal | Mol. Cell. Biol. |

