Multiple checkpoint breach of B cell tolerance in Rasgrp1-deficient mice.

TitleMultiple checkpoint breach of B cell tolerance in Rasgrp1-deficient mice.
Publication TypeJournal Article
Year of Publication2013
AuthorsBartlett A, Buhlmann JE, Stone J, Lim B, Barrington RA
JournalJournal of immunology (Baltimore, Md. : 1950)
Volume191
Issue7
Pagination3605-13
Date Published2013 Oct 1
Abstract

Lymphopenic hosts offer propitious microenvironments for expansion of autoreactive B and T cells. Despite this, many lymphopenic hosts do not develop autoimmune disease, suggesting that additional factors are required for breaching self-tolerance in the setting of lymphopenia. Mice deficient in guanine nucleotide exchange factor Rasgrp1 develop a lymphoproliferative disorder with features of human systemic lupus erythematosus. Early in life, Rasgrp1-deficient mice have normal B cell numbers but are T lymphopenic, leading to defective homeostatic expansion of CD4 T cells. To investigate whether B cell-intrinsic mechanisms also contribute to autoimmunity, Rasgrp1-deficient mice were bred to mice containing a knockin autoreactive BCR transgene (564Igi), thereby allowing the fate of autoreactive B cells to be assessed. During B cell development, the frequency of receptor-edited 564Igi B cells was reduced in Rasrp1-deficient mice compared with Rasgrp1-sufficient littermate control mice, suggesting that tolerance was impaired. In addition, the number of 564Igi transitional B cells was increased in Rasgrp1-deficient mice compared with control mice. Immature 564Igi B cells in bone marrow and spleen lacking RasGRP1 expressed lower levels of Bim mRNA and protein, suggesting that autoreactive B cells elude clonal deletion during development. Concomitant with increased serum autoantibodies, Rasgrp1-deficient mice developed spontaneous germinal centers at 8-10 wk of age. The frequency and number of 564Igi B cells within these germinal centers were significantly increased in Rasgrp1-deficient mice relative to control mice. Taken together, these studies suggest that autoreactive B cells lacking Rasgrp1 break central and peripheral tolerance through both T cell-independent and -dependent mechanisms.

DOI10.1002/anie.201305010
Alternate JournalJ. Immunol.