miR172b controls the transition to autotrophic development inhibited by ABA in Arabidopsis.

TitlemiR172b controls the transition to autotrophic development inhibited by ABA in Arabidopsis.
Publication TypeJournal Article
Year of Publication2013
AuthorsZou Y, Wang Y, Wang L, Yang L, Wang R, Li X
JournalPloS one
Volume8
Issue5
Paginatione64770
Date Published2013
Abstract

Seedling establishment is a critical phase in the life of plants when they are the most vulnerable to environment. Growth arrest at post-germinative stage under stress is the major adaptive strategy to help germinating seedlings to survive a spectrum of stressful conditions. ABA signaling is the key pathway to control stress-induced developmental arrest. However, mechanisms controlling the phase transition under abiotic stress are not fully understood. Here, we described miR172b as a new key regulator controlling transition of germinating seedlings from heterotrophic to autotrophic growth under osmotic stress in Arabidopsis. We showed that miR172b and its target SNZ were co-expressed during early seedling development. Expression of miR172b and SNZ was low after radicle emergence and sharply increased at the checkpoint to autotrophic development under normal conditions. Interestingly, activation of miR172b and SNZ was completely abolished by ABA and osmotic stress. miR172b overexpression and snz-1 exhibited increased sensitivity to ABA and osmotic stress during specific post-germinative stage, and resulted in higher expression of ABI3, ABI5 and downstream genes, such as Em6 and RAB18, than wild type under ABA treatment. Our results revealed that miR172b is a critical regulator specifically controlling cotyledon greening during post-germinative growth by directly targeting SNZ under ABA treatment and osmotic stress.

DOI10.3969/j.issn.1672-7347.2013.06.013
Alternate JournalPLoS ONE