Improvement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats.

TitleImprovement of vascular insulin sensitivity by downregulation of GRK2 mediates exercise-induced alleviation of hypertension in spontaneously hypertensive rats.
Publication TypeJournal Article
Year of Publication2013
AuthorsXing W, Li Y, Zhang H, Mi C, Hou Z, Quon MJ, Gao F
JournalAmerican journal of physiology. Heart and circulatory physiology
Volume305
Issue8
PaginationH1111-9
Date Published2013 Oct 15
Abstract

Exercise training lowers blood pressure and is a recommended nonpharmacological strategy and useful adjunctive therapy for hypertensive patients. Studies demonstrate that physical activity attenuates progression of hypertension. However, underlying mechanisms remain elusive. Vascular insulin resistance and endothelial dysfunction plays a critical role in the development of hypertension. The present study investigated whether long-term physical exercise starting during the prehypertensive period prevents the development of hypertension via improving vascular insulin sensitivity. Young (4 wk old) prehypertensive spontaneously hypertensive rats (SHRs) and their normotensive Wistar-Kyoto (WKY) control rats were subjected to a 10-wk free-of-loading swim training session (60 min/day, 5 days/wk). Blood pressure, mesenteric arteriolar vasorelaxation, G protein-coupled receptor kinase-2 (GRK2) expression and activity, and insulin-stimulated Akt/endothelial nitric oxide synthase (eNOS) activation were determined. SHRs had higher systolic blood pressure, systemic insulin resistance, and impaired vasodilator actions of insulin in resistance vessels when compared with WKY rats. Systolic blood pressure in SHRs postexercise was significantly lower than that in sedentary rats. Vascular insulin sensitivity in mesenteric arteries was improved after exercise training as evidenced by an increased vasodilator response to insulin. In addition, exercise downregulated vascular GRK2 expression and activity, which further increased insulin-stimulated vascular Akt/eNOS activation in exercised SHRs. Specific small interfering RNA knockdown of GRK2 in endothelium mimicked the effect of exercise-enhanced vascular insulin sensitivity. Likewise, upregulation of GRK2 by Chariot-mediated delivery opposed exercise-induced vascular insulin sensitization. Taken together, our results suggest that long-term exercise beginning at the prehypertensive stage improves vascular insulin sensitivity via downregulation of vascular GRK2 that may help to limit the progression of hypertension.

DOI10.1002/anie.201302825
Alternate JournalAm. J. Physiol. Heart Circ. Physiol.