The developmental regulation of glutamate receptor-mediated calcium signaling in primary cultured rat hippocampal neurons.

TitleThe developmental regulation of glutamate receptor-mediated calcium signaling in primary cultured rat hippocampal neurons.
Publication TypeJournal Article
Year of Publication2013
AuthorsGuo ZY, Li CZ, Li XJ, Wang YL, Mattson MP, Lu CB
JournalNeuroreport
Volume24
Issue9
Pagination492-7
Date Published2013 Jun 19
Abstract

We have studied the developmental changes of glutamate-induced calcium (Ca²⁺) response in primary cultured hippocampal neurons at three different stages of cultures, 3, 7-8, and 14-16 days in vitro (DIV), using fura-2 single-cell digital micro-fluorimetry. We found that glutamate-induced Ca²⁺ signaling was altered during development, and that two different ionotropic glutamate receptors, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs), were differently involved in the modulation of calcium response at different stages of neuronal culture. In the stages of culture at 3 and 8 DIV, glutamate-induced Ca²⁺ influx was mostly because of AMPAR activation and subsequent opening of voltage-dependent calcium channels, as Ca²⁺ response can be largely reduced by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and by nifedipine. In the advanced culture (14-17 DIV), glutamate-induced Ca²⁺ response was less sensitive to 6-cyano-7-nitroquinoxaline-2,3-dione and nifedipine. Furthermore, AMPA-induced Ca²⁺ response increased in a time-dependent manner during the cultures of 3-8 DIV and then reduced in the advanced culture of 14-17 DIV. NMDA-induced Ca²⁺ influx increased in a time-dependent manner, with a marked increase in the advanced culture (14-17 DIV). These results suggest that glutamate-induced Ca²⁺ signaling switched from AMPA-voltage-dependent calcium channel to NMDA-calcium signaling during development.

DOI10.3978/j.issn.2225-319X.2012.11.17
Alternate JournalNeuroreport