Cross-species extrapolation of prediction models for cadmium transfer from soil to corn grain.

TitleCross-species extrapolation of prediction models for cadmium transfer from soil to corn grain.
Publication TypeJournal Article
Year of Publication2013
AuthorsYang H, Li Z, Lu L, Long J, Liang Y
JournalPloS one
Volume8
Issue12
Paginatione80855
Date Published2013
Abstract

Cadmium (Cd) is a highly toxic heavy metal for both plants and animals. The presence of Cd in agricultural soils is of great concern regarding its transfer in the soil-plant system. This study investigated the transfer of Cd (exogenous salts) from a wide range of Chinese soils to corn grain (Zhengdan 958). Through multiple stepwise regressions, prediction models were developed, with the combination of Cd bioconcentration factor (BCF) of Zhengdan 958 and soil pH, organic matter (OM) content, and cation exchange capacity (CEC). Moreover, these prediction models from Zhengdan 958 were applied to other non-model corn species through cross-species extrapolation approach. The results showed that the pH of the soil was the most important factor that controlled Cd uptake and lower pH was more favorable for Cd bioaccumulation in corn grain. There was no significant difference among three prediction models in the different Cd levels. When the prediction models were applied to other non-model corn species, the ratio ranges between the predicted BCF values and the measured BCF values were within an interval of 2 folds and close to the solid line of 1∶1 relationship. Furthermore, these prediction models also reduced the measured BCF intra-species variability for all non-model corn species. Therefore, the prediction models established in this study can be applied to other non-model corn species and be useful for predicting the Cd bioconcentration in corn grain and assessing the ecological risk of Cd in different soils.

DOI10.1371/journal.pone.0082679
Alternate JournalPLoS ONE